Sunday, February 14, 2016

Losing our minds in middle age

When negative stress affects our well-being, we sometimes feel like we are losing our minds...



But when in the lifespan does this really happen? When do we lose our brains?

Until age two we experience rapid growth of brain cells, or neurons. Around that age, rarely used neurons and unneeded connections between neurons (synapses) are reduced. Past research by Hedman, van Haren, Schnack, Kahn, and Hulshoff (2012) suggests that childhood is a time of brain growth, with more neurons being produced. Starting around age thirteen and continuing through adolescence we see brain volume loss as pruning reoccurs so that our brains can be more efficient. Most of young adulthood sees little change in brain volume, but starting at age 35, MRI scans demonstrate a yearly loss of about 0.2% of brain volume. This loss accelerates in older age: in our sixties this increases to a loss of about 0.5% of brain volume every year; this acceleration is often given as one of many explanations for other normal declines associated with aging.

To examine in detail the brain volume loss during the transition to midlife, Guo, Isohanni, Miettunen, Jääskeläinen, Kiviniemi, Nikklinen, Remes, Huhtaniska, Veijola, Jones, and Murray (2016) examined MRI scans of 43 men and 23 women as they aged from their 30s (33-35 years) to their 40s (42-44 years). The participants in this longitudinal study were part of the Northern Finland 1966 Birth Cohort so they should have had similar experiences in their lives as they grew up at the same time. The researchers' goals were to measure overall brain volume at both ages, to identify the locations of any loss as observed in the second MRI performed when the participants were in their 40s, and to clarify any sex differences that emerged.

Total brain volume decline was higher than predicted by past research: on average men lost 3.21% and women lost 4.03%. This sex difference was very small but it reached statistical significance, meaning that the difference was unlikely to be due to chance.

The location of loss also showed a sex difference. After taking into account percentage of total brain loss, Guo et al. found that men lost most of their neurons in the midline areas (specifically: bilateral precentral gyri; bilateral paracingulate gyri; and bilateral supplementary motor cortices). Most of these areas relate to motor skills and one may be involved in decoding certain emotions.

Women's loss was more spread out with most of it occurring in the outer brain (specifically: bilateral frontal parietal; temporal lobe; occipital cortex; cerebellum). These areas relate to language, motor skills, sensory interpretation, vision and visual memories, and emotion association.

Guo et al. did not make guesses beyond a quick mention of hormones as to what caused the sex differences in overall brain loss or the sex differences in loss locations. They also speculated that these differences may translate into differences in midlife men's and women's health or behavior, yet they did not offer any examples.

That leaves us all free to speculate. One bit of demographic information that caught my eye was that the researchers coded participants on "parental leave" as working full-time, because it meant that the participants usually worked full-time but were absent from that work to take care of a newborn child. This made me think about other research related to brain volume and parenting. For example, when women are pregnant their brain volumes can shrink an average 4% and not return to normal volume until about six months after birth. First, that makes the 4.03% decline found in Guo et al.'s female participants sound less ominous: this sort of decline is a normal experience for many women in young adulthood. Second, although most Finnish women in the 1980s usually started having babies at age 29, is it possible that some of the 23 women in this study gave birth just before the second MRI scan? Or is the location of brain loss during pregnancy similar to the location of women's brain loss in the transition to middle age?


Starting in the 80s, Finland offered parental leave to fathers as well as mothers. So it is possible that some of the male participants may have also identified themselves as being on parental leave. However, we know that fathers and mothers often take on different roles in parenting. For example, women are more likely to report that they get up to feed or care for babies in the middle of the night; mothers report more sleep loss than fathers even as children grow older. Poor sleep is associated with brain volume loss in the frontal, temporal, and parietal lobes. Different parental roles and related sleep loss may contribute to women's additional 1% of brain loss; brain volume loss related to poor sleep and brain volume loss related to women's transition to midlife are located in similar areas.

In the end we do not know what is causing these declines or sex differences, and even if we did, at this point we cannot know if these are related to any changes in men's and women's behavior or health as they age. The one thing you can know for sure is that if you are middle aged, pregnant, a new mother, or are sleep-deprived, you ARE losing your mind.

FURTHER READING:

The Guo et al. (2016) article can be accessed online or through your local college library.

Loss of brain cells does not always relate to loss of cognitive functioning. Read an APA Monitor on Psychology article by Melissa Phillips on the strengths of the middle-aged mind.

Childhood trauma can also reduce brain volume. Read a report on trauma's effects on brain development from the Child Welfare Information Gateway (U.S. Dept. of Health and Human Services).

BONUS:

Watch a video from Brown University on Synaptic Pruning:


No comments:

Post a Comment